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Abstract

Recent studies have demonstrated inspiring success in
leveraging geo-tagged social media data for applications
such as event detection, location recommendation and
mobile healthcare. However, in most real-life social
media streams, only a small percentage of data have
explicit geo-location metadata, which hinders the power
of social media from being fully unleashed.

We study the problem of inferring geo-locations
from social media messages. While a number of text-
based geo-locating techniques have been proposed, they
either fall short of automatically identifying indicative
keywords from noisy social media posts or do not in-
tegrate rich prior knowledge of geological regions. We
propose an attentive memory network called GeoAttn
for localization of social media messages. To capture
indicative keywords for location inference, GeoAttn
consists of an attentive message encoder, which selec-
tively focuses on location-indicative terms to derive a
discriminative message representation. The message
embedding is then fed into a memory network, which
selectively attends to relevant Points-of-Interest (POIs)
for location prediction. The message encoder and key-
value memory network are jointly trained in an end-to-
end manner. The attention mechanisms in GeoAttn
not only alleviate noisy information for higher predic-
tion accuracy, but also provide interpretable attention
scores that rationalize the predictions. Our experiments
on a million-scale geo-tagged tweet dataset show that
GeoAttn outperforms previous state-of-the-art loca-
tion prediction methods by 15.5% in mean error dis-
tance, and is capable of locating over half of the tweets
within 5km.

1 Introduction

The location information contained in social me-
dia data enables linking people’s online posts to
their physical-world activities, and plays an impor-
tant role in intelligent location-based systems. For

example, recent studies have demonstrated inspir-
ing success in leveraging geo-tagged social media
for a wide range of applications including data-
driven traffic scheduling[10], urban planning[15], event
detection[39], POI recommendation[40, 41] and per-
sonal healthcare[20, 30]. However, in a typical social
media stream (e.g., Twitter), only less than 1% records
are associated with explicit GPS information. The local-
ization problem—which aims at inferring the locations
of social media messages—has thus become an impor-
tant issue for unlocking the potential of social media
and building intelligent location-based systems.

Earlier attempts to this problem are mostly
gazetteer-based [12, 19], maintaining a look-up table
from location entity names to real-world geographical
locations. Such gazetteer-based methods are heavily
limited by the scope and accuracy of the used gazettes.
They also have difficulty in handling aliases and abbre-
viations, both of which are abundant in social media
streams. Extensions of topic models [1, 4, 7, 28, 38] to
jointly model geo-location and text have also been used
for location prediction. The performance of such models
is largely limited by the assumptions they make regard-
ing the distribution of location-indicate keywords. Re-
cently, a series of classification methods [27, 34, 35] have
been purposed and have shown to produce the state-of-
the-art performance for text localization. These models
directly cast the localization problem as a classification
task on geodesic grids but how to select such grids pose
a challenge on their own. There are other works that
take advantage of information beyond textual messages,
such as social network relations and message metadata
to predict the location of the user[6, 11, 29]. These
methods are largely orthogonal to ours.

Linking messages to the correct locations faces two
major challenges. The first is to identify location
indicative keywords from notoriously short and noisy
social media text. Current state-of-the-art methods
mainly rely on preprocessing to remove stopwords and
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normalize abbreviations. The remaining keywords are
then treated equally. However, this is counter-intuitive
for social media posts: for a post ”DTW is closed
because of freezing rain! Flight delayed twice then
cancelled”, the words ”DTW” (referring to Detroit
Metro Airport) and ”flight” are obviously more useful
in the location prediction task than ”rain” or ”delay”.
The second challenge is to leverage the existing rich
prior knowledge of regions. In the localization task,
it is often mentions of places, events and activities
that differentiate one area from another. This is
an excellent opportunity to leverage prior knowledge
for useful metadata and exploit semantic connections
between activities and their venues. By simply casting
the localization problem as classification over geodesic
grids, the semantic aspect of regions are overlooked.

Contributions. We propose GeoAttn for prediction
of geo-locations of social media messages. At the high
level, GeoAttn jointly learns the location aspect repre-
sentation for messages and POI-anchored regions to en-
code their semantics, and performs localization by com-
paring the encoded message to region representation.
In essence, we treat the problem as cross-modal match-
ing instead of classification over grid-like areas. The
whole model is end-to-end trainable without the need
to manually assign weights to keywords. Moreover, the
attention scores over keywords and POIs offer intuitive
explanations that rationalize the prediction process.

To realize this goal, GeoAttn features two impor-
tant modules: (1) an attentional message encoder; and
(2) a key-value memory network[31]. Built upon a re-
current neural network, the message encoder derives a
discriminative message representation by modeling the
word sequence and selectively attending to the keywords
that are location-indicative. To map keywords to geo-
graphical locations, we employ a key-value memory net-
work. During prediction, we use the message represen-
tation from the message encoder to apply a soft atten-
tion layer over all entries in order to output a probability
distribution over geographic space.

We highlight the contributions of this paper as
follows:

1. We propose an attentional memory network frame-
work for localization of social media messages. The
framework bridges the text and location modalities
by a key-value memory structure, and is capable
of leveraging existing POI knowledge to facilitate
accurate location prediction.

2. We design attention mechanisms over both the
messages and regions. The attention mechanisms
not only alleviate the effect of noisy information,
but also offer interpretable explanations of the

prediction process.

3. We have performed extensive experiments on
million-scale tweet datasets. Our experimental re-
sults show that GeoAttn reduces the mean er-
ror distance by more than 15.5% compared to the
best-performing baseline. Furthermore, the derived
attention scores are highly meaningful in terms of
assigning messages into proper locations.

2 Related Work

2.1 Geolocation Prediction Existing studies have
investigated geolocation prediction at two different lev-
els: user localization and document localization.

User localization aims at predicting the home lo-
cation of social network users. The prediction granu-
larity varies from city level to state level or even coun-
try level [27]. Based on the data used, there are three
lines of approaches for user localization: text-based
[4, 9, 14, 26, 28, 34], network-based [6, 11, 29] and a
hybrid of the two [18, 23]. Existing text-based user
localization methods predominantly cast the problem
as a multi-class classification problem [9, 14, 26, 34].
Network-based approaches assume that friends in a so-
cial network are geographically close[6, 11, 29]. Hybrid
approaches [18, 23, 25] combine knowledge from both
text and networks for location prediction. The appli-
cation of user-level localization is limited as users are
treated as static throughout time which is necessary for
mobility modeling, personalized recommendation, etc.

Document localization, which attempts to infer the
geolocation of a specific document, is more closely re-
lated to our study. Geographic topic models [1, 7, 38] ex-
tend classic topic models by assuming each latent topic
has distributions over not only textual keywords but
also geographical coordinates. Supervised classification
methods have also been applied to this problem using
textual features[34]. Compared with these document
localization methods, our model employs distributional
representation of words to address the sparsity problem
and utilizes the attention mechanism to perform auto-
matic feature selection. Furthermore, we incorporate
prior knowledge on POIs through the memory compo-
nent, giving us better accuracy with less training data
and also better intrepretability.

2.2 Attention Mechanisms and Memory Net-
works Attention mechanisms empower models with
the ability to extract local features and assign different
importance to different sections of the input[2]. Vaswani
et al. [32] present a concise definition of attention as
“mapping a query and a set of key-value pairs to an
output”. The attention mechanism has been widely
adopted for deriving textual representation for tasks in-
cluding machine translation [2], image captioning [37]
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and visual question answering [36]. We are among the
first to use the attention mechanism for the localization
problem. In our model, the attention mechanism auto-
matically selects words that are location-indicative and
matches messages with location representations.

Memory networks [33] get their name from a long-
term memory component that can be read and written
to. Sukhbaatar et al. [31] proposed a continuous variant
of the memory network that could be trained in end-to-
end fashion. Miller et al. [17] demonstrate the flexibility
of Key-Value Memory Networks in exploiting different
knowledge sources. The key-value structure provides
more possibilities in encoding prior knowledge and
allows nontrivial transforms between keys and values.
In our setting, the key-value memory network is used to
bridge text and location.

3 Problem Description

We address the localization problem for individual
messages in a supervised setting. Our input consists
of two parts: a collection C of social media records
{r1, r2, . . . , rM} and auxiliary prior knowledge which is
a collection P of regions or POIs {pn1

, pn2
, . . . , pnP

}.
Every record rm ∈ C is a two-element tuple (m, l),

where l = (φ, λ) is the location of record creation, and
m is a piece of user-generated text.

Each of these known POIs p is also a two-element
tuple (d, l) where d is its textual metadata including
name, category and optionally description. l is the
coordinates of the centroid of p.

Our goal is learn a model M on historical social
media messages C with the help of the auxiliary data P.
When given a future test social media record (m, l), the
model is expected to recover the ground-truth location
l in terms of a distribution over geological space based
on the text message m.

4 The GeoAttn Model

In this section, we first describe the overall design phi-
losophy of GeoAttn, and then the details of different
modules in GeoAttn.

4.1 Model Overview GeoAttn is designed for the
message-level localization problem using only text data.
Rather than discretizing geographic space using heuris-
tics, we directly output a probability distribution esti-
mate over continuous space.

Our model features automatic feature selection via
the message attention layer, cross-modal translation
with the help of POI metadata via the memory net-
work and interpretable prediction results via the POI
attention layer.

Concretely, as shown in Figure 1, GeoAttn con-
sists of two major components: (1) the message en-
coder and (2) the POI memory network. With an at-

tentional recurrent neural network (RNN), the message
encoder generates a low-dimensional representation of
the location-related aspect of message semantics. This
message representation is then mapped to locations by
the memory network through another attention layer.
The resulting output is a probability distribution over
the geographical area.

4.2 The Message Encoder The message encoder is
designed to generate a low dimensional vector represen-
tation for each input message m, which is a variable
length word sequence {u1, u2, · · ·un}. We design the
message encoder as an attentional bidirectional RNN,
detailed as follows.

4.2.1 Word Embeddings. Before feeding our mes-
sage into the recurrent neural network, we map the
words to low-dimensional embedding vectors.

Word embeddings allow us to generalize beyond
symbolic matching and utilize semantic similarity. As
shown in Figure 1, an embedding layer Φ is applied to
map the input keywords {u1, u2, · · ·un} in the message
into a vector sequence. We use the GloVe model [22] to
train word embeddings on the training set of our Twitter
text corpus and make the embeddings fine-tunable. The
training objective of GloVe is to learn word vectors such
that their dot product equals the logarithm of the words’
probability of co-occurrence.

We also use an existing POS tagger [21] to obtain
POS tags for each word and append the one-hot encod-
ing to the GloVe embeddings.

4.2.2 The Recurrent Unit. Word embeddings are
used as input to a bi-directional RNN to derive a
representation of the entire text message. The RNN
preserves word order information and produces context-
aware hidden representations for each word. We choose
the gated recurrent unit (GRU) [5] due to its higher
efficiency. From a length-n word embedding sequence,
the RNN produces n hidden states {h1, · · ·hn}:

(4.1) {h1, · · ·hn} = GRU({Φ(u1), · · ·Φ(un)})
To further enhance the message representation, we

make the GRU-based RNN bi-directional. Namely, in
addition to feeding the original word sequence into the
RNN, we also reverse the word sequence and feed it
into another RNN. At each time step, we concatenate
the latent states from both directions to form the
representation at time step t, ht = [

−→
ht ;
←−
ht ].

4.2.3 The Attention Mechanism. Not all words
in the message are equal: we wish to focus only on
the words that are location-indicative, preferring POI
name mentions, venue types and activity descriptions.
To address this issue, we introduce an attention layer
over the sequence of hidden states in the RNN. The
attention layer performs automatic feature selection and
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Figure 1: GeoAttn has two major components: (1) the message encoder and (2) the POI memory network.
The message encoder generates low-dimensional representations for messages with an attentional RNN. Using the
message representation as guidance, the POI memory network exploits POI metadata to bridge semantic space
and location space.

enables us to measure how much each word contributes
to the location aspect of the entire sentence.

Attention is commonly used in sequence-to-
sequence networks, as a form of attending to previ-
ous encoder state while generating a new sequence[2,
16]. This has been extended to a general form of
attention where an alignment score is computed be-
tween an external query vector Q and the sequence
states {h1, h2, · · · , hn}. Then, the retrieved result is
a weighted sum over the hidden states. Compared to
directly matching ht and Q, ‘attention’ can be seen as
soft retrieval. A,W1,W2 are weight matrices and q is
the final representation of the sentence.

(4.2)

at = AT tanh(W1Q+W2ht)

a′t =
exp(at)∑
i exp(ai)

q =
∑
t

a′tht

When an external query vector Q is not available,
we can still obtain specific aspects from the sentence
using self-attention [13]. In our case, the message
attention layer acts as a ‘location extractor’. The
attention parameter A acts as an anchor for ‘location’
related words in semantic space. Formally, the attention
scores for words are computed as follows to generate the
final message representation q:

(4.3)

at = AT tanh(Waht)

a′t =
exp(at)∑
i exp(ai)

q =
∑
t

a′tht

In the case studies we will showcase several examples of
how the attention layer successfully identifies location-
related words from social media messages.

4.3 The Key-Value Memory Network The
memory network leverages existing information sources
to guide the mapping from text to geo-locations.

A straightforward approach to do so would be to
directly learn a function that takes text and translates
it into to locations. However, this approach suffers from
two major drawbacks. First of all, training an accurate
mapping requires a large amount of training data that
covers all areas and all possible text references. Second,
such a black-box model provides little insight in the
internal working process of the mapping. It is hard to
see what drives the model to come to such a prediction.

In comparison, our strategy takes advantage of ex-
isting POI metadata with a key-value memory net-
work. Using POI information as an auxiliary infor-
mation source bootstraps the mapping between text
to location. The memory network then learns low-
dimensional representations of the textual aspect of
POIs that shares a common embedding space with the
message representation. In such a way, the model is
able to match POIs that have close semantics with the
given message to determine the probability of the mes-
sage originating from that location. Our memory net-
work also introduces another attention layer over POIs,
providing interpretability in the prediction process.

4.3.1 Key-Value Embeddings Each entry in the
memory network is a single POI p = (d, l) ∈ P , and
consists of two aspects: text and location. The text
fields in its metadata (name, category etc.) are used
to initialize the key k and its location is used as the
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corresponding value v.
Each word in the text field is embedded using

a shared embedding layer with the message encoder,
encouraging the alignment of the two representations,
as shown below:

(4.4)

di = {u′1, u′2, · · · , u′n}

ki =
1

n

∑
j

Φ(u′j)

We directly used average pooling over the embeddings
as the POI metadata in our dataset was relatively short.
When long textual descriptions are available, it would
be suitable to use a RNN similar to that in the message
encoder to generate the key embedding.

For the location representation, we have to bear two
considerations in mind: the message may have multiple
possible matching candidate POIs and the spatial prox-
imity between candidates affect the outcome of predic-
tion. Thus we retreat from directly using coordinates,
since multiple candidates will pull the prediction in dif-
ferent directions and the resulting prediction will lie in
the middle. We also choose not to use one-hot vectors
of manually divided grids as the proximity relationship
between POIs are no longer preserved in this represen-
tation. In our network, each of the locations vi are
represented by a bi-variate Gaussian distribution over
space, centered at the POI coordinates l.

(4.5) vi = N (li,Σi)

It is then natural to reflect our belief about the possible
origin of the message using the weighted sum or mixture
of memory values.

4.3.2 The POI Attention In the POI key-value
memory network, we use another attention layer to
selectively focus on the POIs that are relevant to
the given message. Instead of selecting the top-k
candidates, we softly attend over the entire memory to
preserve the end-to-end property of the network.

The external query vector here is the message
representation q and the attention weights are computed
by aligning q to the keys of the memory network
{k1, k2, · · · , kn}. This alignment weight is then used
to determine the relative weight of the corresponding
memory value.

(4.6)

ai = qTWmki

πi =
exp(ai)∑
j exp(aj)

The attention score is used as the mixture weight
of the Gaussian components, which is then combined

to output a Gaussian mixture distribution over the
geographic space.

For a given social media messagem, the distribution
of the source location l is estimated as:
(4.7)

Pr(l̂|m) =

pn∑
i=1

πiN (l̂|li,Σi) =

pn∑
i=1

{πi
exp(− 1

2 (x− li)T Σi(x− li))
2π
√

Σi

}

When training the entire network, the loss function
is the negative loglikelihood of the Gaussian mixture
model over all training examples.

(4.8) L = −
∑

(m,l)∈C

log{
pn∑
i=1

πiN (l|li,Σi)}

5 Experiments

5.1 Experimental Setup

5.1.1 Dataset We use a real-life geo-tagged tweet
dataset collected from New York users. The geo-
tagged tweets are collected through Twitter’s public
API during the period of Aug. 1st - Nov. 30th, 2014,
summing to a total of 1.9 million geo-tagged tweets.
Each tweet consists of a text message, its original
location in coordinates and the timestamp.

We also use a POI dataset collected from
Foursquare, which includes a total of 266,291 POI list-
ings. In our experiments we only use the most popular
4000 POIs. We experimented with using more POIs but
the improvement was marginal. Each POI is character-
ized by name, category, and GPS location.

5.1.2 Baselines

• LR[25] is a logistic regression model that uses bag-
of-words unigrams as features. 1

• LGTA [38] is a geographical topic model that
discovers spatially coherent topics from geo-tagged
text.

• CrossMap [40] is a state-of-the-art approach for
spatiotemporal activity modeling. Geodesic grids
and words are used to construct a bi-partite net-
work, which is then embedded in low-dimensional
space. The grid with the smallest cosine distance
to the word embeddings is the predicted location.

• MDN-Shared [24] represents the message as
a bag-of-words and uses the mixture density
network[3].

• AttnReg passes the RNN-encoded message
through a feed forward network to predict the co-
ordinates.

1Grids of 100m × 100m are used.
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Method Acc@1km Acc@5km Mean/m Median/m

LR 0.1722 0.3865 9370.12 7671.37
LGTA 0.0249 0.2118 12034.30 13596.33
CrossMap 0.1375 0.2449 13114.57 11688.08
MDN-Shared 0.0424 0.3965 7528.63 6353.75
AttnReg 0.0139 0.2519 8431.57 7976.62
GeoAttn 0.1187 0.5218 6359.14 4616.79

- Memory 0.0599 0.4248 7222.69 6067.92
- Attn 0.0323 0.3067 9015.97 8734.26

Table 1: Quantitative comparison of baselines and
model ablations.

To evaluate the effectiveness of the different mod-
ules in GeoAttn, we also include ablations of our
model for comparison.

• GeoAttn- Attn removes the attention layer and
represents the message by the last hidden layer of
the recurrent neural network.

• GeoAttn- Mem is a combination of our model
and MDN-Shared. The attention generated mes-
sage representation is used as the input of the mix-
ture density network.

5.1.3 Implementation We sort the dataset by the
timestamp and hold out the most recent 20% of the
data for testing for all models. Our word embeddings
are trained using the GloVe algorithm on the training
set of Twitter messages to avoid data leakage. Then
within the remaining 80%, we take another 20% as
the validation set to tune the parameters of our model
and use the rest as the training set.We use an exist-
ing TweetNLP[21] tool to pre-process tweet text which
includes tokenizer and part-of-speech tagger. After to-
kenization, the text is normalized using a dictionary[8].
Our code is publicly available 2 and additional details
are available in the supplementary materials.

5.2 Quantitative Evaluation We follow the main-
stream literature [4, 9, 34, 35] in geolocation prediction
and use three metrics all originated from prediction er-
ror distance: accuracy, mean distance and median
distance. The distance is computed with the haversine
formula, which yields the great-circle distance between
two points on a sphere. In our localization setting, we
set two thresholds for correct prediction: 1km and 5km.
For baseline methods that output a single grid label, the
distance is computed from the center of the true label
grid to the predicted grid.

Table 1 shows the performance of different methods
in terms of the four metrics. Figure 2 looks into the
more detailed distribution of prediction error distance

2https://github.com/raspberryice/geo-attn
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Figure 2: Cumulative distribution of error distance
under 10km.

within 10km. Jointly considering the two, we have the
following observations:

• LR and CrossMap both treat the localization prob-
lem as multi-class classification while all the other
methods produce predictions in continuous space.
This is reflected in the cumulative distribution
curve for LR and CrossMap by not crossing the
origin. Given a reasonable grid division heuristic,
classification-based methods can achieve good grid-
level accuracy. However, since they tie words to dis-
crete grids, they cannot generalize the knowledge
to predict labels that do not appear in the train-
ing data. As a result, their mean error distance is
significantly larger than our purposed model that
produces a probability distribution and their accu-
racy drops when the threshold grows larger.

• As a representative of the topic modeling approach,
LGTA does not have strong predictive power. In
LGTA, areas are defined as a distribution over
words. However, most of the frequent words are lo-
cation invariant, and the discriminative words are
of relatively low frequency, such as POI names. In
contrast, GeoAttn utilizes the attention mecha-
nism to recognize location-indicative words.

• The performance gap between the GeoAttn-Attn
/GeoAttn and also MDN-Shared/GeoAttn-
Mem demonstrates the power of the message at-
tention layer in accurately ‘extracting’ the location
related information from the text message. The
attention layer ignores irrelevant content and put
weights on only the location-indicative words.

• AttnReg and GeoAttn-Mem differ in the loca-
tion representation. Feed-forward neural network
layers act as function approximators as AttnReg
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General Category Category Percentage Total

Predictable

POI Mention 29%

57%
Region Mention 20%
Semantic Clue 18%
Event Mention 4%

Unpredictable
Irrelevant 34%

36%
Mismatch 2%

Model
Restriction

Information Lost 4%
7%

Personal 3%

Table 2: Categories of prediction difficulty

directly learns a mapping from semantic space to
coordinates while GeoAttn-Mem learns the map-
ping from semantic space to Gaussian mixture pa-
rameters. Comparing GeoAttn-Mem to AttnReg
shows the superiority of predicting a probability
distribution instead of a single point in space, since
it is possible to have several candidate locations
that pull the single output in different directions.

• Comparing our purposed model and GeoAttn-
Mem,GeoAttn successfully exploits existing POI
metadata to help bridge the gap between semantic
space and location, resulting in an 4.4-9.7% boost
in accuracy and a 11.1% reduction in mean error
distance.

5.3 Data Analysis and Case Studies When it
comes to location inference, the first question to ask
is ”is the location predicable at all?”. To answer this
question, we randomly selected 100 tweets from the test
data and labelled them according to the presence of
location-related clues as shown in Table 2. Cases are
examined for each category3 in Figure 3.

5.3.1 Message of exact mention We first examine
the most straightforward case: when the POI name
is directly mentioned in the message. For Figure 3a
”Happy birthday@Mamajuana Cafe NYC” the message
attention also manages to identify the word Mamajuana
as location indicative. In the memory network, this
name has multiple matches and this is reflected by two
peaks in the output distribution corresponding to the
two real locations of Mamajuana Cafe.

5.3.2 Messages of semantic similarity For this
case, the POI name is not directly mentioned but the
semantics of the message give hints about the location.
The tweet shown in Figure 3b ”Come enjoy a glass of
Nero or Pinot Grigio for happy hour! ... #winelover
#wineoclock #wine” mentions wine names and attaches
many hashtags related to wine , suggesting that the
tweet is posted from a bar. The message attention
captures the phrase a glass of Nero and matches it to

3Standards for each category are explained in the supplemen-
tary materials.

many bar and restaurant locations in Manhattan. In
such cases nailing the exact location of the message
poses difficulty but we can narrow down the range
to make a good estimate. This example shows that
our model goes beyond simple symbolic matching with
gazettes and leverages semantic similarity.

5.3.3 Messages of region mention In some of the
tweets, the location is referred to in a more coarse
granularity than exact POIs. For example, the tweet
”#Nursing #Job in #Montclair, ... in Figure 3c points
us to the town Montclair in New Jersey. Our model
recognizes the hashtag #Montclair as the location and
the POIs that are in the neighbor are assigned with high
weights, contributing to the final prediction.

5.3.4 Location Mismatch Our model imposes a
strong assumption that the location-related words in the
text message are indicators of the origin of the message.
However, this assumption does not always hold. In
the tweet ”Can’t believe I got a ticket in Irvington last
night”, the user is reminiscing in joy from yesterday.
Although Irvington is correctly recognized as location-
indicative, our model fails to account that this is not
the current location of the user any more.

5.3.5 Irrelevant Messages The fact that the user
chooses to add a geotag to his/her message does not
necessary mean that the message itself is closely related
to a particular location. The example in Figure 3e
”I think the idea of the gov increasing the alcohol
consumption age to 25 ...” is expressing the user’s
opinion on the policy. The distribution shows that there
is no particular area that matches both words and the
prediction confidence is low.

5.3.6 Personal Locations Some of the location
mentions, such as this office, home, our hotel are too
vague to use for prediction on a single message level. In
Figure 3f the tweet ”My girl finally got a dining table
for her apartment ...”, the words dining and apartment
are attached with the largest weight, but it is impossible
to know the exact location.

6 Conclusions and Future Work

We have studied the problem of localization for social
media messages. To handle the noisy nature of so-
cial media messages and take advantage of existing POI
metadata, we propose an attentional memory network
model named GeoAttn. The entire framework is end-
to-end trainable and offers interpretable predictions via
attention scores. Our experiments on a million-scale
tweet dataset shows that GeoAttn outperforms state-
of-the-art methods for localization of social media mes-
sages, and meanwhile provides meaningful explanations
for its predictions.

In the data analysis section we discover that one-
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Figure 3: Case study: we show the attention weights applied to each word in twitter messages and the output
probability distribution. The green label shows the true location of the tweet and the red label is the predicted
location.

third of the messages are not location indicative. The
presence of such noisy data degrades the performance of
predictive models since it presents misleading signals.
A potential direction for future work is to identify
such messages are unpredictable. Another possible
improvement is to take user history into account and
make personalized predictions.
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