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ABSTRACT
Understanding and predicting user behavior on online platforms
has proved to be of significant value, with applications spanning
from targeted advertising, political campaigning, anomaly detection
to user self-monitoring.

With the growing functionality and flexibility of online plat-
forms, users can now accomplish a variety of tasks online. This
advancement has rendered many previous works that focus on
modeling a single type of activity obsolete.

In this work, we target this new problem by modeling the in-
terplay between the time series of different types of activities and
apply our model to predict future user behavior.

Our model, FM-Hawkes, stands for Fourier-based kernel multi-
dimensional Hawkes process. Specifically, we model the multiple
activity time series as a multi-dimensional Hawkes process. The
correlations between different types of activities are then captured
by the influence factor. As for the temporal triggering kernel, we
observe that the intensity function consists of numerous kernel
functions with time shift. Thus, we employ a Fourier transformation
based non-parametric estimation. Our model is not bound to any
particular platform and explicitly interprets the causal relationship
between actions.

By applying our model to real-life datasets, we confirm that the
mutual excitation effect between different activities prevails among
users. Prediction results show our superiority over models that do
not consider action types and flexible kernels.
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1 INTRODUCTION
Users often leave a trail of various activities on social network plat-
forms or online marketplaces. For example, as illustrated in Figure 1,
when we log on to our social networks accounts, we may choose
to browse our timeline, click on some of the seemingly interesting
links, reshare a portion of them, and perhaps follow a few new
friends. When we go shopping on Amazon, we would typically
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search for the item, read through reviews, add some candidates to
our wish list and after a final round of comparison, buy one of them.
After the purchase happens, we might come back to leave a review.

Building accurate and interpretable temporal behavior models fa-
cilitates many applications, including targeted advertising on social
platforms to maximize the probability of interaction [3], purchase
prediction for marketing [14], user profiling [10], anomaly user
detection [5, 6] and churn prediction [28]. Users may also record
their daily activities and use behavior models for self-assessment.

Current studies on user behavior [5, 6, 14] focus on finding
patterns in one type of activity, overlooking the fact that social
platforms have grown to be much more powerful in terms of func-
tionality. Actions may be supplementary, forming a workflow, such
as committing new code and pushing it to the remote repository
or substituting, indicating different options such as upvoting or
downvoting an article on social rating website. Apparently, these
actions are not independent, calling for a comprehensive model
rather than studying them at an individual level.
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Figure 1: Actions forming a workflow

In this paper, we seek to build a unified framework for model-
ing multiple types of spontaneous behavior for a single user. Our
method is not constrained to a particular platform but can learn
relationships between multiple types of actions. By taking on a
comprehensive perspective, we wish to uncover the interplay be-
tween different types of user behavior, predict future activity, and
depict the patterns of regular user behavior.

Our task boils down to two core questions: ‘if a user performs
action A, will he go on to perform action B?’ and ‘when will the user
perform action B?’. In essence, we are dealing with causal analysis
and temporal prediction simultaneously. The former is related to
the interpretability of the model, and the latter the accuracy and
practical value.

Traditional time series analysis models such as ARIMA and their
variations [23] deal with the latter problem by discretizing time
through dividing the time series into equal length time intervals.
They produce predictions in the form of “how many activities will
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be performed in some future time interval". They also fail to reveal
the causal correlation between succeeding events.

Point process models with Markovian state transfer [4, 5, 19]
are capable of predicting the exact time of future activities on
a continuous time scale. They consider the impact of the direct
predecessor but not long term effects.

To tackle the above problem, we purpose the FM-Hawkes model,
short for Fourier-based kernel multi-dimensional Hawkes model.
Following the previous success of point process models in event
modeling, we also build our model under the framework of sto-
chastic point process theory. However, we do not assume states for
the user, turning to Hawkes processes for explicitly capturing the
triggering effect of previous events on later events. Time series of
users are modeled as multi-dimensional Hawkes processes with
each type of action corresponding to a dimension. The correlation
between actions is then captured by the influence factor between
dimensions.

Unlike many previous works that assume the triggering effect
follows the patterns of exponential or power-law decay, we learn
the temporal relationship from data, eliminating the need for prior
knowledge. Observing that the intensity is the sum of weighted
triggering functions with time shift, we devise a novel method
based on Fourier transformation for learning the triggering function.
Compared to ODE based methods, our proposed method generates
continuous functions with lower complexity.

Finally, we put our model to test by using it to fit actions on an
online forum Metafilter and the development platform Github. By
analyzing the learned parameters, we find that there are distinct
patterns in the distribution of parameters, dividing users into two
categories. We also attempt the task of predicting user or repository
behavior by using an alternative version of the thinning algorithm
[9, 22]. Prediction results show that our model outperforms base-
lines that do not differentiate activity types and use fixed parame-
terized kernels.

Our main contributions are:
(1) We build a unified framework, FM-Hawkes, for character-

izing and predicting multiple types of spontaneous user be-
havior. Our model is extensible for use in all platforms and
can learn the correlation between any two types of actions.

(2) Modeling actions as multi-dimensional Hawkes processes,
we design a non-parametric estimation method for the trig-
gering function that does not require any domain knowledge.

(3) Our model is capable of predicting future user activity by
simulation. We demonstrate this ability with experiments
on real-life datasets. Our results show that considering inter-
category triggering effects produces more accurate predic-
tions.

We conduct a brief review of previous research on online user
activity modeling and Hawkes processes in Section 2. After in-
troducing the terminology and notation in Section 3, we present
the FM-Hawkes model in Section 4. We derive the EM algorithm
for inferring parameters and introduce our Fourier-based Trigger-
ing function estimation procedure. Experiments are described in
Section 5. Last of all, we conclude our work and discuss possible
improvements in Section 6.

2 RELATEDWORK
2.1 User Activity Modeling
One of the earliest works on modeling human behavior patterns is
the negative binomial distributionmodel (NBD) [7]. It has been used
to model purchase behavior in marketing studies. NBD assumed
that the probability of purchase was stationary over time, which
is overly simplistic for the complex behavior in online platforms
today.

With the rise of the Internet, more studies aimed at characterizing
online user behavior. [19] proposed a cascading non-homogeneous
Poisson process to model email correspondence. This model was
based on two observations, namely bimodal and periodical patterns.
The model is equivalent to a hidden Markov model with two states.

[28] formulated the task as a binary classification problem for
dropout prediction. [5] studied behavioral patterns from the per-
spective of inter-activity time (IAT). They identified four major
characteristics of IAT: positive correlation between successive IATs,
periodic spikes, bimodal distribution and heavy-tailed distribution.
Based on this discovery, Alceu et al. proposed the RSC model which
stands for Rest-Sleep-Comment, the three user states. [4] reveals
activity patterns in social voting websites by similar methodol-
ogy. BuSca [6] model is a mixture of the Poisson process and the
self-feeding process. The Poisson process component represents
constant and regular behavior while the self-feeding component
represents the burstiness. The Hierarchical Time-Rescaling Model
(HTR) [14] also adopts the theory of point processes, and defines
the rate function as the product of several fluctuation factors. By ad-
justing its parameters, Possionian, periodic, bursty and self-exciting
patterns could be reproduced by HTR. However, the above works
all limited their study to a single type of user activity.

[9] considered repost actions as triggers for following actions,
thus leading to the co-evolution of social networks and information
cascades. Their model is specifically designed for these two types of
actions, and cannot be directly applied to other actions. The work
most similar to ours, [23] proposed a general linear auto-regression
model that considers activity smoothness, periodicity as well as
interaction between different types of behavior. When dealing with
sparse activities and short observed sequences, the model fails to
produce accurate predictions.

2.2 Hawkes Processes
Hawkes processes [13] have been widely used to capture self-
exciting and mutual-exciting behavior between entities. A few ap-
plications are predicting earthquakes, modeling financial markets
and crime modeling [12, 16, 20].

In the field of social mining, Hawkes processes have been adopted
to model information propagation on networks[24][2][26]. [21]
combined a modified Hawkes process with feature engineering
to predict the popularity of content. [17] also apply the marked
Hawkes process to detect rumours.

Traditional choices for the triggering kernel include the expo-
nential function and the power-law function. As for non-parametric
kernel estimation, [27] and [18] proposed a non-parametric model
based on ordinary differential equations.[1] used an estimation
based on solving the Wiener-Hopf equation. Contrast function-
based estimation in [11], also leaded to the least squares problem [8].



Both [15] and [25] decomposed the triggering kernel into a set of
basis functions and estimated the coefficients.

3 PRELIMINARY
Definition 1. An activity (action) is defined as a triple i = (u, t , c)
where u is the user, t is the time of the action and c is the type or
category of the action.

Lower letters i , j and l represent activities, and the corresponding
user, time and activity category are denoted as ui , ti and ci respec-
tively. We use activity and action interchangeably throughout our
paper.

Definition 2. An activity sequence is the set of activities per-
formed by user u up to observation time t (0 ≤ t ≤ Tu ), Su (t) =
{(u, ci , ti )}N

u (t )
i=1 , as depicted in Figure 2. The length of this sequence

|Su (t)| = Nu (t).

Every activity sequence consists of subsequences of specific
types of activities. We regard to the subsequence that contains only
type c activities as Suc (t). Similarity, we have |Suc (t)| = Nu

c (t).
When t = Tu , we drop the time t to simplify the notation. For

example, Su (Tu ) = Su and Nu
c (Tu ) = nuc . Note that the terminal

time of observation Tu often exceeds the time of the last activity.
Observations for all types of activities of one user are aligned, which
means Tu

c = Tu for all c .

user u

type c
type c'

type c''

t

Tu

(u, ci, ti)

activity i

Figure 2: Illustration of activity sequence

Definition 3. A temporal point process is a list of discrete events
occurring in continuous time {t1, t2, · · · , tn } with 0 ≤ ti ≤ T .

Alternatively, the same information can be represented as a
counting process, where we record the number of events that have
occurred up to a time point t by random variable N (t). The defini-
tion of temporal point processes has made it particularly amenable
for modeling random events in time, with wide applications in
queuing theory, computational neuroscience, telecommunication
network modeling and human interaction modeling. In this paper,
we represent multi-category user activities as a multi-dimensional
point process.

Definition 4. The conditional intensity function (rate function) λ(t)
of a point process is the expected instantaneous rate of events
occurring given the history.

λuc (t)dt = λcu (t |Su (t))dt = E[dNu
c (t)|Su (t)] (1)

A point process is completely characterized by its conditional
intensity function. However, given its stochastic nature, a point
process may have many realizations. Su (t) is the set of all possible
realizations of Su (t).

Given a collection of action sequences {Su } from user group U
with activity types C, we wish to accomplish the tasks listed below:
Task 1: Uncover the correlation between different types of
user activity.
We wish to quantify to what extent does an action j of type c ′
affect the probability of user u performing an action i of type c and
how this effect changes with time. Under the framework of point
processes, we need to estimate ∆λuc (t) with Su (t) and Su (t) − {j}.
Task 2: Activity Prediction.
Given a user’s action sequence Su up to Tu , predict Nu

c (t) for any
time in the future.

We list the symbols used throughout the paper in Table 1.

Table 1: List of Symbols

Symbol Definition
Nu
c (t) the number of actions of type c that u has performed up to t

Su (t) action sequence of u up to t
nuc the total number of actions u performed of type c
Tu the total time user u has been observed
C the set of actions an user can perform
U the set of users

λuc (t) conditional intensity function for u of type c
µuc the base intensity for action c of user u
ϕuc ′c the kernel function between actions c ′ and c for user u
auc ′c the influence factor for action c ′ to action c for user u
κ(t) the global triggering function
N the number of time slots in N (t)dt
M the total number of actions recorded

4 FM-HAWKES MODEL
In this section we describe our model FM-Hawkes in detail. We will
first introduce Hawkes processes and its multi-dimensional exten-
sion. In FM-Hawkes, we tailor the parameters of multi-dimension
Hawkes processes for the task of modeling multiple types of online
user behavior. Based on this setting, we derive an EM algorithm
to learn the user-specific parameters in FM-Hawkes. The key is to
explicitly represent the branching process or causal relationship
between activities by introducing latent variables. We are then left
with the temporal kernel. Given the observation that the intensity
function is actually composed by the temporal kernel shifted in
time, we simplify the problem by transforming the triggering func-
tion into the frequency domain and perform Fourier based kernel
estimation.

We also performed a thorough complexity analysis of the steps
in our iterative algorithm. Compared to another state-of-the-art
non-parametric kernel estimation method that is based on solving
ODEs(Ordinary Differential Equations), our algorithm has much
less complexity.

In the last subsection, we show how our method can generate
predictions. Due to the stochastic nature of point processes, our
prediction is completed in the form of sampling new activities and
updating the intensity function. By performing multiple simula-
tions, we can get a good estimation of the number of activities that
a user would perform in a future period.



4.1 Multi-Dimensional Hawkes Processes
In its one-dimensional form, a Hawkes process defined as a point
process with the intensity function in the form of (2).

λ(t) = µ +
∑
i
ϕ(t − ti ) (2)

The intensity consists of two parts, the base intensity µ and the
excitation from previous events ϕ(t − ti ).

Due to the need to considermultiple types of activities, we extend
this basic Hawkes process to a multi-dimension form, with one type
of activity corresponding to a type of its own. Thus the intensity
function is defined as (3).

λuc (t) = µuc (t) +
∑
ti<t

ϕucic (t − ti ) (3)

The function ϕuc ′c (t) represents the influence for user u from an
activity of type c ′ to another activity of type c . The strength of the
influence changes over time, in some form of temporal decay.

It is noteworthy that the impact between two action types may
not be symmetric. For example, actions that are performed in a
fixed sequence, such as searching on an online marketplace and
adding an item to the shopping cart, would not be performed in
the reversed order. So the influence factor for search→ purchase
would not be equal to the influence factor for purchase→ search.

In our model, we decompose the kernel function ϕucc ′(t) into
aucc ′κ(t).

λuc (t) = µuc +
∑
t ′<t

aucc ′κ(t − t
′) (4)

By doing so, we separate the user and type variables with the time
variable. This is critical to the inference of the model parameters,
but also can be justified in terms of meaning.

We believe that users have different usage habits: the normal,
periodical behavior is captured by base intensities µuc and bursty
behavior is described by correlation coefficients auc ′c .

Since the functionality of the platform is the same for all users,
the temporal decay effect should be similar. Instant message plat-
form should display more rapid decay compared to work-related
platforms.

Summing up, the FM-Hawkes model has the following parame-
ters:

• A global triggering function κ(t) that describes the temporal
decay of the excitation effect between activities.

• Influence factors that describe inter-category correlation
{aucc ′} and base intensities that describe regular behavior
{µuc }. These parameters are local to the user.

4.2 EM Algorithm
The Hawkes model can be seen as a mixture model that generates
actions either from the excitation of previous actions, or the base
intensity.

The generation process for event i of type ci at time ti is as
follows:

(1) Draw from all Nu (ti ) previous user events and the base
intensity the cause of event i with equal probability 1

Nu (ti )+1 .

(2) If event i is caused by another event j, then event i is gener-
ated with intensity auc jciκ(ti − tj ).

(3) Otherwise the event i is intrinsic to the user and caused by
the base intensity µuci .

We therefore use latent variablespi j andpii to represent the branch-
ing structure, in other words the causal relationship of the activities.

pi j =

{1 if user u’s action i was caused by event j
0 otherwise (5)

pii =

{1 if user u’s action i is caused by base intensity
0 otherwise (6)

It is then straightforward to estimate the parameters with respect
to latent variables pi j and pii with the EM (Expectation Maximiza-
tion) algorithm.

Generally, for a mixture model of k = {1, 2, · · · ,m} components,
let θ = {θ1,θ2, · · · ,θm } be the parameters related to each compo-
nent. πk represents the probability of selecting the kth component.
zi is the latent variable for instance i , indicating the component
that actually generated the instance. xi is the observed variable for
instance i . To perform an estimation of the parameters, we wish to
maximize the Equation (7).

Q(θ ,θ t−1) = E[
∑
i
log Pr (xi , zi |θ )]

=
∑
i

∑
k

Pr (zi = k |θ ,xi )(logπk + log Pr (xi |θk ))
(7)

E(Expectation) step:
According to the intensity function defined in Equation (3) and

the Bayes theorem, for two actions i and j performed by the same
user u, we have:

pi j =
auc jciκ(ti − tj )

λuc (ti )
(8)

pii =
µuci

λuc (ti )
(9)

where λuc (ti ) = µuci +
∑
tl <ti a

u
cl ciκ(ti − tl ).

M(Maximization) step: Once we have estimates for the la-
tent variables, we can now try to find the parameters θ that will
maximize the complete likelihood of data.

θ = argmaxθQ(θ ,θ t−1) (10)

In our case, since πk = 1
Nu (t )+1 is fixed given the data, maximiz-

ing Q is equivalent to maxθ
∑
i
∑
k Pr (zi = k |θ ,xi ) log Pr (xi |θk ).



max
θ

∑
i

∑
k

Pr (zi = k |θ ,xi ) log Pr (xi |θk )

=
∑
u

nu∑
i

∑
k

Pr (zi = k |θ ,xi ) log Pr (xi |θk )

=
∑
u

nu∑
i

∑
tj<ti

pi j {log Pr (xi |auc jci ,κ(t))}

+
∑
u

nu∑
i
pii {log Pr (xi |µuci )}

=
∑
u

nu∑
i
[
∑
tj<ti

pi j logauc jciκ(ti − tj )

−
∑
c

auc ′c

∫ Tu

tui
κ(t − tui )dt]

+
∑
u
[
nu∑
i
pii log µuci −

∑
c

µuc T
u ] (11)

The update values for µuc and auc ′c are then computed by setting
the partial derivative to zero.

∂Q

∂µuc
=

nu
c∑
i
pii (

1
µuc

) −Tu = 0 (12)

µuc =
1
Tu

nu
c∑
i
pii (13)

∂Q

∂auc ′c
=

nu
c∑
i

∑
tj<ti∧c j=c ′

pi j
1

auc ′c
−

nu
c∑
i

∫ Tu

ti
κ(t − ti )dt = 0 (14)

auc ′c =

∑nu
c

i
∑
tj<ti∧c j=c ′ pi j∑nu

c
i

∫ Tu

ti
κ(t − ti )dt

(15)

It is noteworthy that the estimation of the base intensity µuc is
not dependent on the triggering function κ(t), but updating the
influence factors auc ′c requires computing the integral of κ(t).

In the initialization stage, we first set all pii and pi j to be equal
for every activity i . For the first round of computing auc ′c , since κ(t)
is still unknown at the moment, we set the denominator to nuc .

4.3 Fourier Based Triggering Function
Estimation

As seen in the section above, we are left to estimate the triggering
function κ(t) that characterizes how the intensity of self and mutual
excitation decays over time. Unlike previous works that assume
the kernel takes on a particular form, we wish to estimate κ(t) in a
non-parameter fashion, so that no prior knowledge is required and
our model can adapt to various types of social platforms.

However, when the triggering coefficients {auc ′c } are unknown,
we cannot directly observe κ(t). However, we can obtain samples of
λ(t), which is the weighted sum of time-shifted triggering functions
as shown in Figure 3. We assume that all realizations of Su exist

t

λc (t)

t1 t2 t3 t4 t5

user u
type c u

Figure 3: λ(t) is consisted of κ(t) with time shifts

in the network history. Thus we can use observations of activity
counts as an approximation of the intensity function.∑

U

∑
C

λuc (t)dt ≈
∑
U

∑
C

dNu
c (t) = N (t)dt (16)

Our key insight is that by transforming λ(t) to the frequency
domain, the time shift can be converted into the multiplication of
an exponential, greatly simplifying the problem. For a function
f (t) that is defined on the time domain and its frequency domain
representation F (w), we have the following Fourier transform pair:

f (t − t ′)↔ e−jwt ′F (w) (17)
Given that κ(t) = 0 when t ≤ 0,

λuc (t) = µuc +
∑
c ′

auc ′c

∑
cl=c ′∧tl <t

κ(t − tl ) (18)

The frequency domain counterpart of λuc , denoted as Λuc is:

Λuc (w) =
∫ ∞
−∞

λuc (t)e−jwtdt

= µuc × 2πδ (w) +
∑
c ′

auc ′c

∑
cl=c ′

e−jwtlK(w)
(19)

As the events for one user in one activity category are sparse,
we use the activities from the entire network to estimate κ(t).

Λ(w) =
∑
U

∑
C

Λuc (w) (20)

For practical consideration, we take the Discrete Fourier Trans-
formation of the accumulated activity time series of the entire
network. We take N samples from N (t)dt at equal time intervals.

wk =
2π
N

k,k = 0, 1, · · · ,N (21)

Let i = {0, 1, · · ·N − 1} be the indexes of the time slots. DFT gives
us the frequency domain representation of N (t)dt , which is Λ(w)
as {(wk ,y[wk ])}.y[wk ] contains information about the amplitude
and phase of the sinusoid wave of frequencywk .

y[wk ] =
N−1∑
i=0

e−jwk iN (t)dt[i] (22)

Figure 4 shows the result of DFT on the Metafilter dataset.
After performing Fourier transformation, for a givenwk we can

estimate K[wk ] as

K[0] = y[0] − 2π ∑
U
∑

C µuc∑
U
∑

C
∑
c ′ a

u
c ′cn

u
c ′

(23)
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K[wk ] =
y[wk ]∑

U
∑

C
∑
c ′ a

u
c ′c

∑
cl=c ′ e

−jwtl
(24)

Transforming back to the time domain yields

κ(t) = 1
N

N−1∑
k=0

e jwk tK[wk ] (25)

In our implementation, since the input ‘signals’ of DFT are real
numbers, we only take the semi-positive frequencies. When trans-
forming back to the time domain, we compute the complex conju-
gates of the signal values of the positive frequencies and pad them
at the end. This ensures that the inverse DFT produces real values
as well.

The complete algorithm for learn parameters in FM-Hawkes is
listed below.

Algorithm 1: Learning parameters for FM-Hawkes
Input : {N (t)dt}Nt=0
Output : {auc ′c }, {µ

u
c },κ(t).

1 Initialize {pi j = 1
Nu
c (t )+1 }, {pii =

1
Nu
c (t )+1 }.;

2 Initialize {µuc = 1
Tu

∑nu
c

i pii };

3 Initialize {auc ′c =

∑nuc
i

∑
tj <ti∧cj =c′ pi j
nu
c

};
4 {(wk ,y[wk ])}← DFT({N (t)dt}). ;
5 while not converge do
6 for frequencywk do
7 Calculate K[wk ].
8 Update pii and pi j by Equation (9) and (8);
9 Update auc ′c and µuc by Equation (15) and (13);

4.4 Complexity
In this section we take a closer look at the steps in our algorithm.

Discrete Fourier Transform is only performed once and is known
to have the complexity of N log(N ). Computation of K[wk ] con-
sists of O(∑U(|C| − 1) × (nu )) operations according to Equation
(24). Since the number of types is a constant determined by the
specific online platform, the complexity of K[wk ] is linear to the
total number of actions in the dataset O(M). It is easy to see that

K[0] is of the same complexity. So updating κ(t) needs O(M × N )
operations.

In the E step, we need to updatepi j for every pair of activities and
pii for every activity. As for the M step, µuc requires a summation
over pii and auc ′c a selected summation over pi j . The integral is
actually computed through the following equation:

∫ Tu

ti
κ(t − ti )dt =

1
N

N−1∑
k=0

K[wk ]
j

wk
(1 − e jwk (Tu−ti )) (26)

We list the computational complexity of major steps in our algo-
rithm in Table 2.

Table 2: Complexity Analysis

Operation Complexity for user Complexity for network
DFT - O(N logN )
K[wk ] - O(M)

Update κ(t) - O(M × N )
Update pi j O((nu )2 × N ) O(max{nu } ×M × N )
Update pii O(nu × N ) O(M × N )

µuc O(nu ) O(M)
auc ′c O((nu )2 + nu × N ) O(max{nu } ×M +M × N )

If the algorithm converges after L iterations, then the complete
complexity is O(L ×max{nu } ×M × N ).

It is easy to see that updating the latent variables pi j , pii and
parameters µuc auc ′c is embarrassingly parallel with respect to users.
The triggering function κ(t) is then updated by collecting the esti-
mates of parameters for all users.

The ODE-based algorithm in [27] represents impact functions
by N basis functions, where each basis function is discretized to K
points. It learns basis functions and coefficients via alternating opti-
mization. The complexity of the ODE-based algorithm per iteration
is reported to be O(Nnu 3U 2 + NK(nuU + nu 2)). It is noteworthy
that in our algorithm, we represent the triggering function as a ar-
ray of values on different frequencies rather than the exact function
value at discrete time points.

4.5 Prediction
We predict future activities by simulation with a variation of the
thinning process proposed in [9]. The key idea is to consider ev-
ery dimension separately and draw a sample from each type of
activity. Then the minimum time of the samples is a valid sam-
ple for the multi-dimensional Hawkes process. For one particular
type of activity, rejection sampling is used to generate a sample
since it is difficult to directly generate the waiting time from a
Hawkes process. When no new activities are created, the Hawkes
process degenerates to a non-homogeneous Poisson process. We
assume that when no action is performed in {t , t + ∆t}, the inten-
sity λuc (t + ∆t) ≤ λuc (t). Hence we can first draw a waiting time
according to the exponential distribution and then test if the sample
is valid.The procedure is described in detail in Algorithm 2.



Algorithm 2: Sampling the next activity
Input :Current time t , user u
Output :Time and type of next activity (s, c).

1 for all types of activities c in C do
2 while sample was rejected do
3 Calculate the intensity rate at t : λuc (t).;
4 Draw waiting time according to Poisson process
5 p ∼ Exp(λuc (t)).;
6 Calculate the intensity rate at t + p:λuc (t + p).;
7 Draw q ∼ Uni f orm(0, 1).;
8 if sample is rejected qλuc (t) ≥ λuc (t + p) then
9 t ← t + p.

10 else
11 sc ← t + p.

12 s ← minc sc ;
13 c ← arдmincsc

5 EXPERIMENTS
In the following section, we will describe our dataset and parameter
settings, then discuss empirical results and implications. Our model
is implemented with MATLAB R2016a.

5.1 Datasets
5.1.1 Metafilter. Metafilter is a online forum that anyone can

contribute a link or a comment to. Our Metafilter dataset was re-
trieved from Metafilter Infodump1. We focus on four activity types,
comments, posts, favorite and contact as shown in Figure 5.
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Figure 5: Frequency distribution on activity types (Metafil-
ter)

5.1.2 Github. GitHub is a web-based Git repository hosting ser-
vice with almost 20 million users and 57 million repositories up
to April 2017.2 Our data is drawn from GitHub Archive3, which
provides more than 20 activity types in the format of hourly ag-
gregated archives. We select ten activity types and illustrate their
frequency distribution in Figure 6. The exact size of our dataset is
shown in Table 3.

1http://stuff.metafilter.com/infodump/
2https://github.com/blog/2345-celebrating-nine-years-of-github-with-an-
anniversary-sale
3https://www.githubarchive.org/
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Figure 6: Frequency distribution on activity types (Github)

Table 3: Dataset Information

Name # of users # of activities Month(s) Year
Metafilter 5097 667,267 Nov. – Dec. 2016
GitHub 8375 1,259,382 Nov. – Dec. 2016

5.2 Parameter Setting
For discrete Fourier transform, we need to specify the sampling
frequency f which is related to the number of time slots N in
the estimation of λ(t). The Nyquist rate for sampling states that
N > 2B where B is the bandwidth wmax

2π . We sample from dN (t)
of the entire network at one hour intervals.

Another consideration is the number of iteration we use in learn-
ing parameters and the number of times we run the simulation for
prediction.
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Figure 7: Convergence of EM Algorithm

Figure 7 shows the convergence rate on two datasets. The num-
ber of iterations required for convergence is quite related to the
size of the data. In our experiments, we run the learning algorithm
for 30 iterations.

Unlike the learning process, the predict is fairly stable over sim-
ulations. Hence, we perform 10 simulations for each period of
prediction and take the average.

5.3 Pattern Discovery
We train our model on the entire dataset and look into the learned
parameters and their implications.

The learned triggering function κ(t) is displayed in Figure 8 and
Figure 9.From the frequency domain graph, we can observe that



there are 4 conspicuous spikes, corresponding to 2.5 hour, 3 hour, 5
hour and 15 hour cycles. These may represent the intervals where
users come back to the forum after their previous activity to check
on updates. Converted to the time domain, the triggering kernel as
shown in Figure 10 decays with time on the large scale in a smooth
way, decrease much slower than exponential kernels assume.
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Figure 8: Triggering Function for Metafilter dataset
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Figure 10: Triggering Function κ(t)

While the triggering kernel is globally shared for all users in
the online platform, the baseline intensity µuc and auc ′c are learned
individually for different users. We first perform clustering by su-
perKmeans in the Weka4 toolbox using the learned user specific
parameters as input features.

We discover that the users are distinctively divided into 2 clusters
for both datasets. To interpret the cluster results, we select the top
4 features that are significant in the clustering procedure and plot
the users’ distribution in Figure 11 and 12.

On theMetafilter dataset, the major difference is whether posting
new content would trigger succeeding events. The blue cluster,
which is active in posting and commenting, also tends to mark
4http://www.cs.waikato.ac.nz/ml/weka/
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Figure 11: Clustering results for Metafilter dataset
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Figure 12: Clustering results for GitHub dataset

posts as favorite after participating in the discussion. However,
their favorite actions always never results in a series of favorites.
The red cluster, on the other hand, seldom posts at all, and users lie
around the center of the figure, indicating relatively high comment
→ favorite and favorite→ triggering effects. These users mostly
play the role of “reader" and skim through the newly posted content,
marking the ones that cater to their taste as favorite.

As for the clusters on Github, the red cluster is the more collab-
orative and popular type, with lots of discussions about current
issues and many users attentively watching the development of the
repo. The blue cluster is more personal and low-profile, focusing
on uploading new code and keeping every member synchronized.

From each of the clusters, we select representative users and
take a detailed look at the correlation between activities. The ele-
ments on the diagonal represent the self-triggering effects. In both
clusters, the self-excitation plays a major role. Apart from the di-
agonal, the excitation matrix is quite sparse. On the left of Figure
13 is a “issue-driven" repo that has frequent discussions on issues
(IssueComment) and these conversations lead to new pushes. Of
course, there is apparently the need to pull from the repo before
pushing new code. To the right of Figure 13 is an “commit-driven"
repo that focuses on contributing new code to the repo on a frequent
basis.

In Metafilter, we also see two types of users, namely “active"
users and “passive" users. As shown in Figure 14, user 1 and user 2
are typical contributors of posts and comments. For user 2, com-
menting often leads him to further write a post or mark related
posts as favorite.On the contrary, user 1’s previous posting and
faving behavior causes him to leave comments echoing his own
opinion. Both of them do not add other users as contacts. For the
“passive" users (user 3 and 4), they seldom create posts of their own,
but often mark others’ post as favorite, then join in the discussion
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and meet new friends. The “add contact" functionality here is a
loose analogy to Twitter’s follow, as users of Metafilter can use this
action to bookmark authors that produce interesting content.
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5.4 Activity Prediction
For the task of prediction, we divide the dataset into a training set
of 50 days and hold out a test set of the remaining 11 days. Since
FM-Hawkes is generative in nature, we can extend the prediction
horizon by treating the generated sequence as observed history.

Our model generates temporal sequences for each user with
activity type labels {(u, t , c)}. Other models may not exactly tell at
which time point an action will occur, but assign the action to a
time window. Therefore, to unify the evaluation of both types of
models, we aggregate the prediction output to the day level.

Apart from FM-Hawkes, we implement the following models:
• FM-Hawkes-reg.We add a L1 norm regularization term for
parameters {auc ′c } to the loss function of FM-Hawkes. This
is to reflect the belief that the correlations between actions
should be sparse.

• Exp-Hawkes.Weuse an exponential functionκ(t) = we(−wt )

with a single parameter w as the triggering function. This
imposes strong assumptions on the decay of influence be-
tween activities over time. The parameterw is also learned
by the EM algorithm, updated every iteration along with µuc
and auc ′c .

• FM-Hawkes-one. This is an one-dimensional variation of
our model. We treat all activities as the same type and train
our model accordingly.

• MAPer model. This auto-regressive linear model was pro-
posed in [23]. It explicitly considers the influence of previ-
ous actions, periodicity, and the influence between different
types of activities.

• MMHP model. The multi-task multi-dimensional Hawkes
process model estimates the triggering function at fixed time
steps by solving the Euler-Lagrange equation [18] as initially
proposed in [27]. The model contains 3 regularization terms
to impose the smoothness of the triggering function and the
low rank and sparsity of {auc ′c }.

We formally define the prediction task as to predict the number
of actions performed by a user up to time t , namely Nu

c (t). This is a
numerical prediction task, and we evaluate our prediction accuracy
by computing the mean square error (MSE) for prediction. The
FuzzyMatch score is computed as the percentage of predictions that
fall within a tolerance threshold of the actual action count. In the
following experiments, we set the tolerance threshold to 1.0. We
also attempt to classify whether users are active over the prediction
period and therefore obtain accuracy, precision, recall and F1 scores
for this task.

In the implementation of Exp-Hawkes, without putting restric-
tions on the shortest interval between activities, we found that the
temporal clustering effect would often take over and generate an
unrealistically large amount of activities.

Generally, FM-Hawkes and FM-Hawkes-reg performs well in
terms of MSE and the F1 score. This shows that our model is good
at simulating user behavior at a fine-grained level. FM-Hawkes-one
performs equally well or even slightly better on classification. We
reason that ’active’ is an attribute of the user and not of a particular
action type, so modeling different actions types separately does
not improve the performance. MAPer suffers from high MSE and
low F1 score. The large number of linear coefficient parameters
make the model very sensitive to records of rare action types and
the error propagates when the prediction horizon is extended. On
the other hand, when no activity is observed for a while, MAPer
will continuously produce prediction of non-activity. MMHP has
significantly high FuzzyMatch scores and high precision but low
recall. This indicates thaht MMHP is underestimating the users’
activeness.

6 CONCLUSIONS & FUTUREWORK
In this paper we design FM-Hawkes, a novel model that captures
the mutual influence betweenmultiple types of user action in online
platforms. Preceding our work, few have mentioned the correlation
between different type of behavior and none have been devoted to
devising such a model.

Themulti-activity triggeringmodel, is based onmulti-dimensional
Hawkes process, with each type of action corresponding to its own
dimension. In order to let ourmodel adjust to different platforms, we
also purpose a novel Fourier transformation based non-parametric
estimation of the triggering kernel.

Extensive experiments on real-life datasets show that this corre-
lation effect prevails in user behavior and is useful for predicting
future user activities.

In this work we only consider the correlations between the ac-
tions of a user and neglect the influence between pairs of users.



Table 4: Prediction results on Metafilter dataset
Evaluation by type Evaluation total

Method MSE FuzzyMatch MSE FuzzyMatch Accuracy Precision Recall F1
FM-Hawkes 6.126 0.852 31.814 0.532 0.896 0.581 0.780 0.333

FM-Hawkes-reg 5.547 0.880 24.490 0.543 0.906 0.620 0.752 0.340
FM-Hawkes-one - - 27.272 0.536 0.905 0.614 0.778 0.343
Exp-Hawkes 460.927 0.828 1849.670 0.376 0.718 0.305 0.879 0.227

MAPer 8.594 0.855 38.546 0.475 0.767 0.121 0.119 0.060
MMHP 8.187 0.938 48.838 0.784 0.869 0.714 0.022 0.021

Table 5: Prediction results on Github dataset
Evaluation by type Evaluation total

Method MSE FuzzyMatch MSE FuzzyMatch Accuracy Precision Recall F1
FM-Hawkes 5.228 0.912 62.395 0.205 0.649 0.288 0.611 0.196

FM-Hawkes-reg 5.030 0.919 57.776 0.233 0.680 0.305 0.570 0.198
FM-Hawkes-one - - 58.383 0.216 0.671 0.301 0.594 0.200
Exp-Hawkes 319.128 0.905 3201.058 0.155 0.450 0.211 0.722 0.163

MAPer 1.920 ×107 0.959 1.920 ×108 0.402 0.724 0.183 0.142 0.080
MMHP 21.698 0.969 1766.317 0.823 0.810 0.406 0.065 0.056

Directly adding the influence effect to the intensity function will
greatly affect the algorithm’s efficiency, so adjustments must be
made to incorporate this factor. One possible solution is to limit
the influence within community structures.
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